where AAA is m×nm\times nm×n.
Then (“orthogonal” or “Euclidean”) projection of a vector b∈Rnb\in \R^nb∈Rn onto C⊆RnC\subseteq \R^nC⊆Rn convex is the solution of the convex optimization problem
Convex optimization problem
Objective is strictly convex ⇒ solution is unique
if b∈Cb\in Cb∈C ⇒ projC(b)=bproj_C(b)=bprojC(b)=b
projC(b)proj_C(b)projC(b) is unique
z=projC(b)z=proj_C(b)z=projC(b) ↔ (b−z)T(y−z)≤0,∀y∈C(b-z)^T(y-z)\le 0, \forall y\in C(b−z)T(y−z)≤0,∀y∈C
−∇f(z)∈NC(z)-\nabla f(z)\in N_C(z)−∇f(z)∈NC(z)
b−z∈NC(z)b-z \in N_C(z)b−z∈NC(z) ⇔use definition of Normal Cone(b−z)T(y−z)≤0,∀y∈C\overset{\text{use definition of Normal Cone}}{\Leftrightarrow}(b-z)^T(y-z)\le 0, \forall y\in C⇔use definition of Normal Cone(b−z)T(y−z)≤0,∀y∈C
Last updated 2 years ago