xLS=x∈Rnmin21∥Ax−b∥2 where A is m×n.
min21∥Ax−b∥2⇔min21∥z−b∥2 subject to z∈range(A) Then (“orthogonal” or “Euclidean”) projection of a vector b∈Rn onto C⊆Rn convex is the solution of the convex optimization problem
projC(b)=z∈Rnmin21∥z−b∥2 subject to z∈C Convex optimization problem
Objective is strictly convex ⇒ solution is unique
Properties of
projC(b)
if b∈C ⇒ projC(b)=b
projC(b) is unique
z=projC(b) ↔ (b−z)T(y−z)≤0,∀y∈C
−∇f(z)∈NC(z)
b−z∈NC(z) ⇔use definition of Normal Cone(b−z)T(y−z)≤0,∀y∈C