Projection Onto Convex Sets

xLS=minxRn12Axb2x_{LS}=\underset{x\in\R^n}{\min}\frac{1}{2}\lVert Ax-b\rVert^2

where AA is m×nm\times n.

min12Axb2min12zb2 subject to zrange(A)\min \frac{1}{2} \lVert Ax-b\rVert^2 \Leftrightarrow \min \frac{1}{2} \lVert z-b\rVert^2 \text{ subject to } z\in range(A)

Then (“orthogonal” or “Euclidean”) projection of a vector bRnb\in \R^n onto CRnC\subseteq \R^n convex is the solution of the convex optimization problem

projC(b)=minzRn12zb2 subject to zCproj_C(b)=\underset{z\in\R^n}{\min}\frac{1}{2}\lVert z-b\rVert^2 \text{ subject to } z\in C
  • Convex optimization problem

  • Objective is strictly convex ⇒ solution is unique

Properties of projC(b)\text{proj}_C(b)

  • if bCb\in CprojC(b)=bproj_C(b)=b

  • projC(b)proj_C(b) is unique

  • z=projC(b)z=proj_C(b)(bz)T(yz)0,yC(b-z)^T(y-z)\le 0, \forall y\in C

f(z)NC(z)-\nabla f(z)\in N_C(z)

bzNC(z)b-z \in N_C(z) use definition of Normal Cone(bz)T(yz)0,yC\overset{\text{use definition of Normal Cone}}{\Leftrightarrow}(b-z)^T(y-z)\le 0, \forall y\in C

Last updated