Cholesky Factorization

  • positive definite matrices

  • computation and definition

  • connection to Newton Method

  • connection to Least-Squares

Positive Definite Matrices

An n×nn\times n matrix AA (assume symmetric) is positive definite if (SPD)

xTAx>0,xRn0x^TAx \gt 0, \forall x\in \mathbb{R}^n \ne 0

positive semi definite if (PSD)

xTAx0,xRnx^TAx \ge 0, \forall x\in \mathbb{R}^n

negative definite matrix

xTAx<0,x0x^TAx \lt 0, \forall x \ne 0

Properties

  1. for any full rank n×kn\times k matrix XX, XTAX>0X^TAX\gt 0 if A>0A \gt 0

    for all yRky\in \mathbb{R}^k nonzero, 0Xy0 \ne XyyT(XTAX)y=(Xy)TZTA(XyZ0)>0y^T(X^TAX)y=\underbrace{(Xy)^T}_{\equiv Z^T}A(\underbrace{Xy}_{\equiv Z \ne 0})\gt 0

① ⇒ every principle sub-matrix of AA is also positive definite

X1TAX1=P1P2P3[I00][A1A2A3][I00]=A1X^T_1AX_1=\begin{matrix}& P_1 & P_2 & P_3& \\ [& I & 0& 0&]\end{matrix}\begin{bmatrix}A_1 &&\\&A_2&\\&&A_3\end{bmatrix}\begin{bmatrix}I\\0\\0\end{bmatrix}=A_1

X2TAX2=[100]A[100]=a11X_2^TAX_2=\begin{bmatrix}1 & 0 & \ldots &0 \end{bmatrix}A\begin{bmatrix}1\\0\\ \vdots \\0\end{bmatrix}=a_{11}

⇒ every diagonal element aii>0a_{ii} \gt 0

  1. A is positive definite ↔ eigenvalues are positive

(x,λ)Rn×R(x,\lambda)\in \mathbb{R}^n\times \mathbb{R} is an eigen-pair of the matrix AA if

Ax=λxAx=\lambda x

without loss of generality, x=1\lVert x\rVert =1

0xTAx=xT(λx)=λxTx=λx2=λ0 \le x^TAx=x^T(\lambda x)=\lambda x^Tx=\lambda \lVert x\rVert^2=\lambda

➡️ If XCn×kX\in \mathbb{C}^{n \times k} (conjugate transpose)

If AA non symmetric: 12(A+AT)\frac{1}{2}(A+A^T) is “symmetric part” of AA

  1. A is positive definite ↔ A has a Cholesky Decomposition

Make simplifying assumption that

“Block” Gaussian Elimination:

A=[1wTwK]=[10wI]L[1wT0KwT]A=\begin{bmatrix}1&w^T\\ w&K\end{bmatrix}=\underbrace{\begin{bmatrix}1&0\\ w&I\end{bmatrix}}_{\equiv L}\begin{bmatrix}1&w^T\\ 0&K-w^T\end{bmatrix}

[1wT0KwwT]=[100KwwT][1wT0I]\begin{bmatrix}1&w^T\\0&K-ww^T\end{bmatrix}=\begin{bmatrix}1&0\\ 0&K-ww^T\end{bmatrix}\begin{bmatrix}1&w^T\\ 0&I\end{bmatrix}

A=[10wI][1KwwT][1wT0I]=LDLT\begin{aligned}A & = \begin{bmatrix}1&0\\ w&I\end{bmatrix}\begin{bmatrix}1&\\ &K-ww^T\end{bmatrix} \begin{bmatrix}1&w^T\\ 0&I\end{bmatrix} \\ &= L D L^T\end{aligned}

(L1ALT=DL^{-1}AL^{-T}=D) By Property ①KwwT>0\overset{\text{By Property ①}}{⇒} K-ww^T \gt 0

Now, allow a11a_{11} arbitrary (positive) α:=a11\alpha := \sqrt{a_{11}}

A=[α0wαI]R1T[100KwwTα]A1[αwTα0I]R1A=\underbrace{\begin{bmatrix}\alpha&0\\ \frac{w}{\alpha}&I\end{bmatrix}}_{R_1^T}\underbrace{\begin{bmatrix}1&0\\0&K-\frac{ww^T}{\alpha}\end{bmatrix}}_{A_1}\underbrace{\begin{bmatrix}\alpha&\frac{w^T}{\alpha}\\ 0&I\end{bmatrix}}_{R_1},

Because KwwT/α2K-ww^T/\alpha^2 is positive definite, it also has the factorization

kwwT/α2(n1)×(n1)=Rˉ2TAˉ2Rˉ2\underbrace{k-ww^T/\alpha^2}_{(n-1)\times (n-1)}=\bar{R}^T_2\bar{A}_2\bar{R}_2

Cholesky Decomposition of A>0A \gt 0

A=RTRA=R^TR, RR is upper triangle

A=R1TA1R1=R1T[100Rˉ2TAˉ2Rˉ2]R1=R1T[100Rˉ2T][1Aˉ2][100Rˉ2]R1=R1TR2TA2R2R1(n1)=R1TR2TRnTlower triangle(I)RnRn1R1upper triangle\begin{aligned}A =R^T_1A_1R_1 &= R^T_1\begin{bmatrix}1&0 \\ 0&\bar{R}^T_2\bar{A}_2\bar{R}_2\end{bmatrix}R_1 \\ &=R^T_1\begin{bmatrix}1&0 \\ 0&\bar{R}^T_2\end{bmatrix}\begin{bmatrix}1& \\ &\bar{A}_2\end{bmatrix}\begin{bmatrix}1&0 \\ 0&\bar{R}2\end{bmatrix}R_1 \\ &= R^T_1R^T_2A_2R_2R_1\\ (n-1) & \vdots \\ & = \underbrace{R^T_1R^T_2\ldots R^T_n}_{\text{lower triangle}}(I)\underbrace{R_nR_{n-1}\ldots R_1}_{\text{upper triangle}}\end{aligned}

Last updated