positive definite matrices
computation and definition
connection to Newton Method
connection to Least-Squares
Positive Definite Matrices
An n×n matrix A (assume symmetric) is positive definite if (SPD)
xTAx>0,∀x∈Rn=0
positive semi definite if (PSD)
xTAx≥0,∀x∈Rn
negative definite matrix
xTAx<0,∀x=0
Properties
for any full rank n×k matrix X, XTAX>0 if A>0 ①
for all y∈Rk nonzero, 0=Xy ⇒ yT(XTAX)y=≡ZT(Xy)TA(≡Z=0Xy)>0
① ⇒ every principle sub-matrix of A is also positive definite
X1TAX1=[P1IP20P30]A1A2A3I00=A1
X2TAX2=[10…0]A10⋮0=a11
⇒ every diagonal element aii>0
A is positive definite ↔ eigenvalues are positive
(x,λ)∈Rn×R is an eigen-pair of the matrix A if
Ax=λx
without loss of generality, ∥x∥=1
⇒ 0≤xTAx=xT(λx)=λxTx=λ∥x∥2=λ
➡️ If X∈Cn×k (conjugate transpose)
If A non symmetric: 21(A+AT) is “symmetric part” of A
A is positive definite ↔ A has a Cholesky Decomposition
Make simplifying assumption that
“Block” Gaussian Elimination:
A=[1wwTK]=≡L[1w0I][10wTK−wT]
[10wTK−wwT]=[100K−wwT][10wTI]
A=[1w0I][1K−wwT][10wTI]=LDLT
(L−1AL−T=D) ⇒By Property ①K−wwT>0
Now, allow a11 arbitrary (positive) α:=a11
A=R1T[ααw0I]A1[100K−αwwT]R1[α0αwTI],
Because K−wwT/α2 is positive definite, it also has the factorization
(n−1)×(n−1)k−wwT/α2=Rˉ2TAˉ2Rˉ2
Cholesky Decomposition of A>0
A=RTR, R is upper triangle
A=R1TA1R1(n−1)=R1T[100Rˉ2TAˉ2Rˉ2]R1=R1T[100Rˉ2T][1Aˉ2][100Rˉ2]R1=R1TR2TA2R2R1⋮=lower triangleR1TR2T…RnT(I)upper triangleRnRn−1…R1