Basics
Last updated
Last updated
The rank of a matrix is the maximum number of its linearly independent column vectors (or row vectors).
It also can be shown that the columns (rows) of a square matrix are linearly independent only if the matrix is nonsingular. In other words, the rank of any nonsingular matrix of order n is n.
An matrix is called nonsingular or invertible matrix if there exists an matrix such that
If does not have an inverse, is called singular matrix.
Definition. A matrix is orthogonal if .
The range (also called the column space or image) of a matrix is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the image or range of the corresponding matrix transformation.