Definition. A set C⊆Rn is convex if for any points x,y∈C and λ∈[0,1].
λx+(1−λ)y∈C Familiar Set Convex
Proof:
Ex:
Example: The set of positive semidefinite matrices
Operations on sets that preserve convexity:
Line: fix any Z∈Rn. 0î€ =d∈Rn.
L={Z+td∣t∈R} λx+(1−λ)y​=λ(z+td)+(1−λ)(z+td)=λz+(1−λ)z+λdtx+(1−λ)dty=z+(λtx+(1−λ)ty)d​
Hyperplane: Hα,β​=x∈Rn∣aTx=β. where a∈Rn\{0}&β∈R
He,1​​={x∣eTx=1}={x∣j=1∑n​xj​=1}​
Halfspace: Hα,β−​={x∈Rn∣aTx≤β}(0î€ =a∈Rn,β∈R)
Norm balls: B□​={x∈Rn∣∥x−C∥□​≤r}, where C∈Rn (center) and r∈R+​ is radius
Proof: A norm ∥⋅∥:Rn→R+​ satisfies the following
∥αx∥=∥α∥⋅∥x∥,∀α∈R
∥x+y∥≤∥x∥+∥y∥
∥x∥=0⇔x=0
Sn×n​≡{x∈Rn×n∣x ane PSD} is convex
Z=λx+(1−λ)y, where X,Y∈Sn×n​ then Z is positive semidefinite.
For any collection of convex sets Ci​∈Rn, i∈I, then i∈I∩​Ci​ is convex. The union does not preserve convexity.
Ex: the unit simplex in Rn is the set Δn​:={x∈Rn∣∑j=1n​xj​=1,x≥0}
He2,0​−​={x∈Rn∣x2​≥0,x1​∈R} Proof: Take x,y∈i∈I∩​Ci​, show λx+(1−λ)y∈i∈I∩​Ci​,∀λ∈[0,1].
Because x,y∈i∈I∩​Ci​⟹x,y∈Ci​∀i∈I
Because Ci​ convex λx+(1−λ)y∈Ci​∀i⟹λx+(1−λ)y∈i∈I∩​Ci​
Addition. If C1​,C2​,…,Cm​ are convex sets in Rn, then the set addition
C1​+C2​+…+Cm​={Z=x1​+x2​+…+xm​∣xi​∈Ci​,i=1,…,m} Image of a set. If C≤Rn is convex and A is an m×n matrix, then A(c):={Ax∣x∈C} is convex.