Linear Constraints

limxRnf(x)\underset{x \in \R^n}{\lim} f(x) subject to Ax=bundetermined system\underbrace{Ax=b}_{\text{undetermined system}}

  • effectively an “unconstrained problem”

  • geometric introduction Lagrange Multipliers

  • Connection to QR decomposition

Matrices A=m×nA=m \times n, b=m×1b=m \times 1

  • mm constants; nn variables

  • rank(A)=mrank(A)=m (full-rank)

    • f:RnRf:\R^n \to \R continuous differentiable once or twice

    • Feasible Set

      • F={xAx=b}=ϕbRange(A)F=\{x \mid Ax=b\}=\phi \Leftrightarrow b\in Range(A)

Equivalent representation of feasible set

F={xAx=b}={xˉ+ZppRnm}F=\{x \mid Ax=b\}=\{\bar{x}+Zp \mid p \in \R^{n-m}\},

where xˉ is any “particular” solution for Axˉ=b,Z is any basis for Null(A)(Z is n×(nm) s.t. AZ=0),p along the null basis\begin{aligned}\text{where } & \bar{x}\text{ is any “particular” solution for }A\bar{x}=b,\\ & Z \text{ is any basis for }Null(A) (Z \text{ is }n\times (n-m) \text{ s.t. }AZ=0),\\& p\text{ along the null basis}\end{aligned}

Equivalent Reduced Problem

limpRnmf(xˉ+Zp)limxRnf(x)Ax=b\underset{p \in \R^{n-m}}{\lim} f(\bar{x}+Zp) \equiv \underset{x \in \R^{n}}{\lim}{f(x)\mid Ax=b}

  • xˉ+Zpx\bar{x}+Zp^* \equiv x^*

Example:

lim12(x12+x22) s.t. x1+x2=1\lim \frac{1}{2}(x_1^2+x_2^2) \text{ s.t. } x_1+x_2=1

eliminate e.g., x2=1x1x_2=1-x_1 substitute

limx1R12(x12+(1x1)2)\underset{x_1 \in \R}{\lim}\frac{1}{2}(x_1^2+(1-x_1)^2)

set derivative = 0 ⇒x1(1x1)=02x11=0x1=12\begin{aligned}\text{set derivative = 0 ⇒}x_1-(1-x_1) &=0 \\ 2x_1-1 &= 0\\ x_1 &=\frac{1}{2} \end{aligned}

x2=12(x1,x2)=(12,12)x_2 = \frac{1}{2} ⇒ (x_1,x_2)=(\frac{1}{2},\frac{1}{2})

Optimality Conditions for “Reduced” Problem

limpRnmf(xˉ+Zp)fZ(p)\underset{p \in \R^{n-m}}{\lim} f(\bar{x}+Zp) \equiv f_Z(p)

1-st order necessary optimal condition pfZ(p)=0\nabla_p f_Z(p)=0

0=pfZ(p)(nm)×1=ZT(nm)×nf(xˉ+Zp)n×10=\underbrace{\nabla_p f_Z(p)}_{(n-m)\times 1}=\underbrace{Z^T}_{(n-m)\times n}\underbrace{\nabla f(\bar{x}+Zp)}_{n\times1}

pp^* is a solution only if pfZ(p)=0ZTf(xˉ+Zp)=0\nabla_p f_Z(p)=0 \Leftrightarrow Z^T\nabla f(\bar{x}+Zp^*)=0

let x:=xˉ+Zpx^* := \bar{x}+Zp^* implies

ZTf(x)=0f(x)Null(ZT)Z^T\nabla f(x^*)=0 \Leftrightarrow \nabla f(x^*) \in Null(Z^T)

Four Fundamental Subspaces Associated with AA and ZZ

range(AT)Null(A)=Rnrange(A^T)\oplus Null(A)=\R^n

Null(ZT)range(Z)=RnNull(Z^T)\oplus range(Z)=\R^n

f(x)Null(ZT)f(x)range(AT)yRm s.t. f(x)=ATy\begin{aligned}\nabla f(x^*) \in Null(Z^T) &\Leftrightarrow \nabla f(x^*) \in range(A^T) \\ &\Leftrightarrow \exist y \in \R^m\text{ s.t. } \nabla f(x^*)=A^Ty\end{aligned}

First-order Necessary Condition for

limxRnf(x)Ax=y\underset{x\in \R^n}{\lim}{f(x)\mid Ax=y}(p)

  • A point xx^* is a local minimizer (stationary) of (pp) only if there exists a vector yRmy \in \R^m s.t.:

    {f(x)=ATy, optimalityAx=b, feasibility\left \{\begin{aligned}&\nabla f(x^)=A^Ty &, &\text{ optimality} \\ &Ax^=b&,&\text{ feasibility}\end{aligned}\right.

    *Note: yy sometimes referred to as “Lagrange Multipliers

Lagrangian Function

L(x,y)=f(x)yT(Axb)L(x,y)=f(x)-y^T(Ax-b)

find a stationary pair (x,y)(x,y) of LL:

0=xL(x,y)=f(x)ATy0=\nabla_x L(x,y)=\nabla f(x)-A^Ty

0=yL(x,y)=(Axb)0=\nabla_y L(x,y)=-(Ax-b)

** ZTf(x)=0f(x)Tp=0,pNull(A)\Leftrightarrow Z^T \nabla f(x^)=0 \Leftrightarrow \nabla f(x^*)^Tp=0, p\in Null(A)

Example Least-Norm Solutions for Underdetermined

Linear-Systems

limx2\lim \lVert x\rVert_2 subject to Ax=bAx=b (underdetermined)

Take f(x)=12x22f(x)=\frac{1}{2}\lVert x\rVert_2^2, f(x)=x\nabla f(x)=x

First-order optimality: (x,y)(x,y) satisfies

XLS=(ATA)1ATbX_{LS}=(A^TA)^{-1}A^Tb (over-determined) normal equation

Example: min-norm to x1+x2++xn=1x_1+x_2+\cdots+x_n=1

m=1m=1

x1+x2++xn=[111]A[x1x2xn]x=1bx_1+x_2+\cdots+x_n=\underbrace{\begin{bmatrix}1&1&\cdots&1\end{bmatrix}}_A\underbrace{\begin{bmatrix}x_1 \\ x_2\\ \vdots \\ x_n\end{bmatrix}}_x=\underbrace{1}_b

A=eT[111]A=e^T\equiv \begin{bmatrix}1&1&\cdots&1\end{bmatrix}

x=e(eTe)1=e(w)1=1we=[1w1w]x=e(e^Te)^{-1}=e(w)^{-1}=\frac{1}{w}e=\begin{bmatrix}\frac{1}{w} \\ \vdots \\ \frac{1}{w}\end{bmatrix}

Second-order Necessary Conditions xx^* is a local minimizer only if

{2fZ(x)0Ax=b\left \{ \begin{aligned}\nabla^2 f_Z(x^)\ge 0 \\ Ax^=b\end{aligned}\right.

Last updated