x∈Rnlimf(x) subject to undetermined systemAx=b
effectively an “unconstrained problem”
geometric introduction Lagrange Multipliers
Connection to QR decomposition
Matrices A=m×n, b=m×1
m constants; n variables
rank(A)=m (full-rank)
f:Rn→R continuous differentiable once or twice
Feasible Set
F={x∣Ax=b}=ϕ⇔b∈Range(A)
Equivalent representation of feasible set
F={x∣Ax=b}={xˉ+Zp∣p∈Rn−m},
where xˉ is any “particular” solution for Axˉ=b,Z is any basis for Null(A)(Z is n×(n−m) s.t. AZ=0),p along the null basis
Equivalent Reduced Problem
Example:
Optimality Conditions for “Reduced” Problem
First-order Necessary Condition for
Lagrangian Function
Example Least-Norm Solutions for Underdetermined
Linear-Systems
p∈Rn−mlimf(xˉ+Zp)≡x∈Rnlimf(x)∣Ax=b
xˉ+Zp∗≡x∗
lim21(x12+x22) s.t. x1+x2=1 eliminate e.g., x2=1−x1 substitute
x1∈Rlim21(x12+(1−x1)2)
set derivative = 0 ⇒x1−(1−x1)2x1−1x1=0=0=21
x2=21⇒(x1,x2)=(21,21)
p∈Rn−mlimf(xˉ+Zp)≡fZ(p) 1-st order necessary optimal condition ∇pfZ(p)=0
0=(n−m)×1∇pfZ(p)=(n−m)×nZTn×1∇f(xˉ+Zp)
⇒ p∗ is a solution only if ∇pfZ(p)=0⇔ZT∇f(xˉ+Zp∗)=0
let x∗:=xˉ+Zp∗ implies
ZT∇f(x∗)=0⇔∇f(x∗)∈Null(ZT)
Four Fundamental Subspaces Associated with A and Z
range(AT)⊕Null(A)=Rn
Null(ZT)⊕range(Z)=Rn
∇f(x∗)∈Null(ZT)⇔∇f(x∗)∈range(AT)⇔∃y∈Rm s.t. ∇f(x∗)=ATy
x∈Rnlimf(x)∣Ax=y(p)
A point x∗ is a local minimizer (stationary) of (p) only if there exists a vector y∈Rm s.t.:
{∇f(x)=ATyAx=b,, optimality feasibility
*Note: y sometimes referred to as “Lagrange Multipliers”
L(x,y)=f(x)−yT(Ax−b) find a stationary pair (x,y) of L:
0=∇xL(x,y)=∇f(x)−ATy
0=∇yL(x,y)=−(Ax−b)
** ⇔ZT∇f(x)=0⇔∇f(x∗)Tp=0,p∈Null(A)
lim∥x∥2 subject to Ax=b (underdetermined)
Take f(x)=21∥x∥22, ∇f(x)=x
First-order optimality: (x,y) satisfies
XLS=(ATA)−1ATb (over-determined) normal equation
Example: min-norm to x1+x2+⋯+xn=1
x1+x2+⋯+xn=A[11⋯1]xx1x2⋮xn=b1
A=eT≡[11⋯1]
x=e(eTe)−1=e(w)−1=w1e=w1⋮w1
Second-order Necessary Conditions x∗ is a local minimizer only if
{∇2fZ(x)≥0Ax=b